- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Kwofie, Samuel K (2)
-
Abraham, Alex R (1)
-
Ashley, Carolyn N (1)
-
Broni, Emmanuel (1)
-
Butcher, Raymond J (1)
-
Miller, Whelton A (1)
-
Parry, Christian S (1)
-
Pena-Martinez, Michelle (1)
-
Ramadhar, Timothy R (1)
-
Wilson, Michael D (1)
-
Wood, Chanyah M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mesothelioma is a rare and aggressive cancer linked to asbestos exposure and characterized by rapid metastasis and poor prognosis. Inhibition of adenosine deaminase acting on dsRNA 2 (ADAR2) RNA binding but not ADAR2 editing has shown antitumor effects in mesothelioma. Natural compounds from the Traditional Chinese Medicine (TCM) database were docked to the RNA-binding interface of ADAR2’s second dsRNA binding domain (dsRBD2), and their drug-likeness and predicted safety were assessed. Eight ligands (ZINC000085597263, ZINC000085633079, ZINC000014649947, ZINC000034512861, ZINC000070454124, ZINC000085594944, ZINC000085633008, and ZINC000095909822) showed high binding affinity to dsRBD2 from molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) calculations. Protein–ligand interactions were analyzed to identify key residues contributing to these binding affinities. Molecular dynamics (MD) simulations of dsRBD–ligand–RNA complexes revealed that four compounds (ZINC000085597263, ZINC000085633079, ZINC000014649947, and ZINC000034512861) had negative binding affinities to dsRBD2 in the presence of the RNA substrate GluR-2. Key residues, including Val164, Met165, Lys209, and Lys212, were crucial for ligand binding, even with RNA present, suggesting these compounds could inhibit dsRBD2’s RNA-binding function. The predicted biological activities of these compounds indicate potential anticancer properties, particularly for the treatment of mesothelioma. These compounds are structurally similar to known anti-mesothelioma agents or anticancer drugs, highlighting their therapeutic potential. Current mesothelioma treatments are limited. Optimization of these compounds, alone or in combination with current therapeutics, has potential for mesothelioma treatment. Additionally, five high-quality full-length ADAR2 models were developed. These models provide insights into ADAR2 function, mutation impacts, and potential areas for protein engineering to enhance stability, RNA-binding specificity, or protein interactions, particularly concerning dimerization or complex formation with other proteins and RNAs.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Parry, Christian S; Abraham, Alex R; Kwofie, Samuel K; Wilson, Michael D; Ramadhar, Timothy R; Butcher, Raymond J (, Acta Crystallographica Section E Crystallographic Communications)In the centrosymmetric title complexes, di-μ-acetato-bis({N,N-dimethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamidato}zinc(II)), [Zn2(C15H15N4S)2(C2H3O2)2] (I), and di-μ-acetato-bis({N-ethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamidato}zinc(II)), [Zn2(C16H17N4S)2(C2H3O2)2] (II), the zinc ions are chelated by theN,N,S-tridentate ligands and bridged by pairs of acetate ions. The acetate ion in (I) is disordered over two orientations in a 0.756 (6):0.244 (6) ratio, leading to different zinc coordination modes for the major (5-coordinate) and minor (6-coordinate) disorder components. Geometrical indices [τ5= 0.32 and 0.30 for (I) (major component) and (II), respectively] suggest the zinc coordination in these phases to be distorted square pyramidal. This study forms part of our aim to discern the mechanism of metal binding in these chelators, their specificity and selectivity, and to gain insight into the role of cellular zinc in physiological processes such as infection, immunity and cancer.more » « lessFree, publicly-accessible full text available July 1, 2026
An official website of the United States government
